集合的概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
数学中的“集合”一词与我们日常生活中“全体”、“一类”、“一群”、“所有”、“整体”等意义相近.集合中的元素是无先后顺序的,这就是元素的无序性,只要构成两个集合的元素一样,我们就称这两个集合是相等的.、
例题:下列描述的对象哪些是集合_______.
①截止到此时刻,教室里上网的同学
②全世界所有身高1米6以上的人
③全世界所有个高的人
④在此时刻,全世界最高的5个人组成的整体
解析:判断一个描述是不是集合,就要看它是不是符合集合的特点:确定的、不同的。
①中的描述说的是此时此刻,是一个确定的时间;教室里上网的同学是一些不同的个体。所以该项的描述符合集合的特点:确定的、不同的。所以该项描述是集合。
中描述的1.6m以上是一个确定的身高,说的这些人也是不同的。所以也是集合。
中说的“世界所有个高的人”,“高个子”是不确定的,没有定义多高才算是“高个子”。不符合确定性,所以不是集合
中描述的最高的5个人,这个是确定的,就是最高的那5个人。我们不应定知道这5个人是谁,但他们确实存在的。所以该项也是集合。
综上可知,符合集合的是①②④
扩展资料:
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序 。
参考资料来源:百度百科——集合
集合的概念是什么
集合概念是与非集合概念相对的。数学中,把具有相同属性的事物的全体称为集合。如:“中国共产党”、“森林”。在某一思维对象领域,思维对象可以有两种不同的存在方式。一种是同类分子有机结合构成的集合体,另一种是具有相同属性对象组成的类。
定义
集合概念与非集合概念分别是对思维对象集合体、对象类的反映。集合体的根本特征,决定集合概念只反映集合体,不反映构成集合体的个体。如中国共产党是由千万个中共党员构成的集体,具有伟大、光荣、正确的性质。概念“中国共产党”只反映党的整体,不能说个别党员是中国共产党。
在不同场合,同一语词可以表达集合概念,也可以不表达集合概念。如:“人”,在“人是由猿转化而来的”这一判断中,“人”是集合概念,因为不是每一个人都具有由猿转化的性质; 在“张三是人”这一判断中,“人”是非集合概念,表示人这一类动物或其中一分子。区别某个语词是否表达集合概念,须结合语言环境而定,即需要把某一领域的每一个对象与概念反映的性质联系起来考察。准确区分集合概念与非集合概念,有助于避免犯混淆概念的逻辑错误。
数学集合
集合的概念:
1、对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象. 。
2、集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
3、元素:集合中每个对象叫做这个集合的元素. 集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
元素与集合的关系:
1、属于: 如果a是集合A的元素,就说a属于A,记作a∈A 。
2、不属于:如果a不是集合A的元素,就说a不属于A,记作a∉A。
要注意“∈”的方向,不能把a∈A颠倒过来写。
集合中元素的特性:
1、确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。
2、互异性:集合中的元素一定是不同的。
3、无序性:集合中的元素没有固定的顺序。
集合分类:
根据集合所含元素个数不同,可把集合分为如下几类:1、把不含任何元素的集合叫做空集Ф ;2、含有有限个元素的集合叫做有限集;3、含有无穷个元素的集合叫做无限集。
常用数集及其表示方法:
1、非负整数集(自然数集):全体非负整数的集合,记作N;
2、正整数集:非负整数集内排除0的集,记作N* 或N+;
3、整数集:全体整数的集合,记作Z ;
4、有理数集:全体有理数的集合,记作Q ;
5、实数集:全体实数的集合,记作R。
注:(1)自然数集包括数0。(2)非负整数集内排除0的集,记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*。
集合定义
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。
集合简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
扩展资料
1、关于集合的元素的特征
(1)确定性:给定一个集合,那么任何一个元素在或不在这个集合中就确定了;
(2)互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的;
(3)无序性:即集合中的元素无顺序,可以任意排列、调换。
2、元素与集合的关系
(1)若a是集合A中的元素,则称a属于集合A;
(2)若a不是集合A的元素,则称a不属于集合A。
3、集合的表示方法
(1)列举法:把集合中的元素一一列举出来, 并用花括号括起来表示集合的方法叫列举法;
(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;
(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
参考资料来源:百度百科-集合
集合的含义是什么
集合具有某种特定性质的事物的总体。
这里的“事物”可以是人,物品,也可以是数学元素。例如:
1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(cantor,
g.f.p.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合
,在数学上是一个基础概念。什么叫基础概念?
基础概念
是不能用其他概念加以定义的概念,也是不能被其他概念定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。
集合
集合
是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的
元素
(或简称为
元
)。
集合的定义
集合的定义是什么呢
高中数学集合的概念是什么
集合的概念:一般地,研究对象统称为元素,一些元素组成的总体叫做集合,也简称集。
1、集合中元素的特性:确定性、互异性、无序性。
2、元素与集合的关系
(1)如果a是集合A的元素,就说a属于A,记作a∈A。
(2)如果a不是集合A的元素,就说a不属于A,记作a∉A。
3、常用数集及其记法
常用数集 简称 记法
全体非负整数的集合 非负整数集(自然数集) N
所有正整数的集合 正整数集 N* 或N+
全体整数的集合 整数集 Z
全体有理数的集合 有理数集 Q
全体实数的集合 实数集 R
4、集合的分类
(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合∅。
集合的表示方法
1、列举法:把集合中的元素一一列出来,写在大括号内。
2、描述法:把集合中的元素的公共属性描述出来,写在大括号内。
1、图示法
(1)文氏图:用一条封闭的曲线的内部来来表示的一个集合。
(2)数轴法
高中数学集合的概念
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
扩展资料:
基数
集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
集合地位:
集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。