多项式时间归类算法

(急)多项式时间内算法 看论文上写算法复杂度控制在多项式时间内,什么叫多项式时间

多项式时间就是指时间复杂度是个多项式 或者说,就是这个程序运行的时间随着数据规模n变化的函数为 f(n) 那么,f(n)是个多项式函数,那么就可以说是控制在多项式之内.

什么是伪多项式时间算法

想要理解“伪多项式时间”,我们需要先给出“多项式时间”的一个清楚的定义。
对于“多项式时间”,我们的直观概念是时间复杂度,其中是一常数。比如,选择排序的时间复杂度是,是多项式时间;暴力解决TSP问题的时间复杂度是,不是多项式时间。我们称这种时间复杂度为“传统时间复杂度”。
我们通常认为传统时间复杂度中的变量表示数据的输入规模。比如,选择排序中,指待排序数组中元素的个数;TSP问题中表示图中节点的数量。但是,这些所谓的输入规模,仅仅是直观的定义,并不足够严谨。为了标准化这些,在计算标准时间复杂度时,我们给出了输入规模的标准定义:
一个问题的输入规模是保存输入数据所需要的bit位数。
比如,如果排序算法的输入是一个32-bit整数 数组,那么输入规模就是,是指数组中元素的个数。对于一个带有个节点、条边的图,需要的bit位数就是。
了解了输入规模的定义,我们来看“多项式时间”的标准定义:
对于一个问题,在输入规模为x的情况下,如果一个算法能够在O()时间内解决此问题,则我们称此算法是多项式时间的,其中为一常数。
当我们处理一些图论、链表、数组、树等问题时,这个标准定义下的多项式时间和我们传统的多项式时间相差无几。比如,用选择排序对元素个数为的数组进行排序时,传统时间复杂度为。输入规模,因此,得到的标准时间复杂度是,仍然是多项式时间。
类似的,假设在带有个节点、条边的图中做DFS(深度优先搜索),传统时间复杂度为。数据规模,因此,标准时间复杂度是,仍是多项式时间的。
然而,当我们处理一些与数论有关的问题时,事情就不太乐观了。现在我们来讨论判断一个整数是否为素数的算法,下面是一个简单的算法:
function isPrime(n):
for i from 2 to n – 1:
if (n mod i) = 0, return false
return true
显然,这个算法在传统时间复杂度计算方法中是多项式时间的。我们不妨认为它的传统时间复杂度是。然后我们再来分析这个问题的输入规模,可能有的同学会说,对于32-bit整数,这个输入规模不就是32吗?这话虽然没错,但是因为在这个问题中,输入规模完全依赖于的大小,所以的范围不再限制在32-bit整数的范围内,而是要探讨当更大时对数据规模的影响。我们知道,保存一个整数所需要的bit位数,因此,在标准的时间复杂度中,此算法的复杂度变为了!这已经不再是多项式时间,而是一个指数时间。
我们可以从下面这个例子中直观感受一下这种指数时间的增长速度:
对于一个二进制串:
10001010101011
我们记指数时间复杂度算法运行时间为T。
然后,我们在二进制串后面仅仅增加一位:
100010101010111
这时,算法运行时间会变为2T(至少)!因此,我们仅仅增加几个bit 就会使得算法运行时间成倍成倍的增长。

什么叫多项式时间算法

定义:若存在一个常数C,使得对于所有n》=0,都有|f(n)|《=C*|g(n)|,则称函数f(n)是O(g(n))。时间复杂度是O(p(n))的算法称为多项式时间算法,这里p(n)是关于n的多项式。不能够这样限制时间复杂度的算法被称为指数时间算法。  例如:时间复杂度为O(nlog(n))、O(n^3)的算法都是多项式时间算法,时间复杂度为O(n^log(n))、O(n!)、O(2^n)的算法是指时间算法。  一个优化问题如果已经找到了多项式时间算法,则称该问题为多项式时间可解问题,并将这类问题的集合记为P,因此多项式时间可解问题就称为P类问题。  一个问题如果没有找到多项式时间算法,那么直觉上它是“难解”的,但又往往无法证明多项式时间算法的不存在性。由于在寻找有效算法上的失败未必一定意味着这样的算法不存在,这就给理论工作者带来了一个难题:一方面证明一个问题不存在多项式时间算法是困难的,至今尚未给出;另一方面有越来越多的问题无法给出多项式时间算法。同时,理论工作者又渴望解决此难题。为此,在20世纪70年代提供了一个漂亮的理论,它把这种失败归结为一个深刻的数据猜想,这个理论就是NP-完全性理论。  定义:给定一个判定问题,如果存在一个算法,对任何一个答案为“是”的实例I。该算法首先给出一个猜想,该猜想规模不超过I的输入长度的某个多项式函数,且验证猜想的正确性仅需多项式时间,则称该问题属于NP类。  定义:如果NP类中所有问题都可以多项式时间归约到NP类中某个问题x,则称x是NP-完全问题。  定义:如果某优化问题x的判定问题是NP-完全的,则称问题x是NP-难的;如果x的判定问题是强NP-完全的,则称x是强NP-难的。

NP的更难问题

虽然是否P=NP还是未知的,在P之外的问题是已经知道存在的。寻找国际象棋或围棋最佳走法(在n乘n棋盘上)是在指数时间内完成的。因为可以证明P ≠ EXPTIME(指数时间),这些问题位于P之外,所以需要比多项式时间更多的时间。判定Presburger算术中的命题是否为真的问题更加困难。Fischer和Rabin于1974年证明每个决定Presburger命题的真伪性的算法有最少2^(2^(cn))的运行时间,c为某个常数。这里,n是Presburger命题的长度。因此,该命题已知需要比指数时间更多的运行时间。不可判定问题是更加困难的,例如停机问题。它们无法在任何给定时间内解决。
P真的容易处理吗?
上面所有的讨论假设了P表示“容易”而“不在P中”表示“困难”。这是一个在复杂度理论中常见而且有一定准确性的假设,它在实践中却不总是真的,原因包括如下几点:
它忽略了常数因子。一个需要101000n时间的问题是属于P的(它是线性时间的),但是事实上完全无法处理。一个需要10-100002n时间的问题不是在P中的(它是指数时间的),但是对于n 取值直到几千时还是很容易处理的。
它忽略了指数的大小。一个时间复杂度n1000属于P,但是很难对付。已经证明在P中存在需要任意大的指数的问题(参看时间等级定理)。一个时间复杂度2n/1000的问题不属于P,但对与n直到几千还是容易应对的。
它只考虑了最坏情况的复杂度。可能现实世界中的有些问题在多数时候可以在时间n中解决,但是很偶尔你会看到需要时间2n的特例。这个问题可能有一个多项式的平均时间,但最坏情况是指数式的,所以该问题不属于P。
它只考虑确定性解。可能有一个问题你可以很快解决如果你可以接受出现一点误差的可能,但是确保正确的答案会难得多。这个问题不会属于P,虽然事实上它可以很快求解。这实际上是解决属于NP而还不知道是否属于P的问题的一个办法(参看RP, BPP)。
新的诸如量子电脑这样的计算模型,可能可以快速的解决一些尚未知道是否属于P的问题;但是,没有一个它们已知能够解决的问题是NP完全的。不过,必须注意到P和NP问题的定义是采用象图灵机这样的经典计算模型的属于表述的。所以,即使一个量子计算机算法被发现能够有效的解决一个NP完全问题,我们只是有了一个快速解决困难问题的实际方法,而不是数学类P和NP相等的证明。
计算机科学家为什么认为P ≠ NP?
多数计算机科学家相信P≠NP。该信念的一个关键原因是经过数十年对这些问题的研究,没有人能够发现一个NP完全问题的多项式时间算法。而且,人们早在NP完全的概念出现前就开始寻求这些算法了(Karp的21个NP完全问题,在最早发现的一批中,有所有著名的已经存在的问题]])。进一步地,P = NP这样的结果会导出很多惊人的结果,那些结果现在被相信是不成立的,例如NP = 余NP和P = PH。
也有这样论证的:问题较难求解(NP)但容易验证(P),这和我们日常经验是相符的。
从另一方面讲,某些研究者认为我们过于相信P ≠ NP,而应该也去寻找P = NP的证明。例如,2002年中有这样的声明:
倾向P≠NP的主要论据是在穷尽搜索的领域完全没有本质进展。也就是说,以我的观点,一个很弱的论据。算法的空间是很大的,而我们只是在开始探索的起点。问题可能只有用非常深刻的理论才能解决。
— Moshe Vardi,莱斯大学
过分依赖某种投机不是规划研究的一个好的导引。我们必须总是尝试每个问题的两个方向。偏见可能导致著名的数学家无法解决答案和他们的预计相反的著名问题,虽然他们发展了所有所需的方法。
— Anil Nerode, 康奈尔大学
关于证明的难度的结果
虽然百万美元的奖金和大量投入巨大却没有实质性结果的研究足以显示该问题是困难的,还有一些形式化的结果证明为什么该问题可能很难解决。
最常被引用的结果之一设计神喻。假想你有一个魔法机器可以解决单个问题,例如决定一个给定的数字是否为质数,但可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论的后果是,任何可以修改来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。
如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。 这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类的定理得到证明,该定理的可能证明有越来越多的陷阱要规避。
这实际上也是为什么NP完全问题有用的原因:若有一个多项式时间算法,或者没有一个这样的算法,对于NP完全问题存在,这将用一种相信不被上述结果排除在外的方法来解决P = NP问题。
多项式时间算法
没人知道多项式时间算法对于NP完全问题是否存在。但是如果这样的算法存在,我们已经知道其中的一些了!例如,下面的算法正确的接受了一个NP完全语言,但是没人知道通常它需要多久运行。它是一个多项式时间算法当且仅当P = NP。
// 接受NP完全语言的一个算法子集和。
//
// 这是一个多项式时间算法当且仅当P=NP。
//
// “多项式时间”表示它在多项式时间内返回“是”,若
// 结果是“是”,否则永远运行。
//
// 输入:S = 一个自然数的有限集
// 输出:是 如果某个S的子集加起来等于0。
// 否则,它永远运行没有输出。
// 注意: 程序数P 是你将一个整数P写为二进制,然后
// 将位串考虑为一个程序。
// 每个可能的程序都可以这样产生,
// 虽然多数什么也不做因为有语法错误。
//
FOR N = 1…infinity
FOR P = 1…N
以S为输入运行程序数P N步
IF 程序输出一个不同的整数的列表
AND 所有整数都在S中
AND 整数的和为0
THEN
OUTPUT 是 并 停机
若P = NP,则这是一个接受一个NP完全语言的多项式时间算法。“接受”表示它在多项式时间内给出“是”的答案,但允许在答案是“否”的时候永远运行。
可能我们想要“解决”子集和问题,而不是仅仅“接受”子集和语言。这表示我们想要它总是停机并返回一个“是”或“否”的答案。是否存在任何可能在多项式时间内解决这个问题的算法?没有人知道。但是如果这样的算法存在,那么我们已经知道其中的一些了!只要将上面的算法中的IF语句替换成下面的语句:
IF 程序输出一个完整的数学证明
AND 证明的每一步合法
AND 结论是S确实有(或者没有)一个和为0的子集
THEN
OUTPUT 是 (或者不是如果那被证明了)并停机

什么是概率多项式时间

  概率多项式时间(Polynomial time)在计算复杂度理论中,指的是一个问题的计算时间m(n)不大于问题大小n的多项式倍数。任何抽象机器都拥有一复杂度类,此类包括可于此机器以多项式时间求解的问题。  数学家有时把“比多项式时间长的算法”视为快速计算,相对应的是超多项式时间,表示任何多项式时间的输入数目只要够大,超多项式时间所需的解题时间终究会大大超过任何多项式时间的问题。指数时间(Exponential time)就是一例。超多项式时间:O(c^f(n)),其中c为大于1的常数,f(n)大于常数,小于线性。可以在决定型依序机器上(例如图灵机)以多项式时间解决的决定性问题,其属于的复杂度类被称为P。可以在多项式时间验证答案的非决定性问题称为NP。而NP也是可以在非确定型图灵机以多项式时间解决的问题(NP两字为Non-deterministic Polynomial的缩写)。

什么是多项式时间

就是问题需要的时间(复杂度)与问题的规模之间是多项式关系。
举个例子,现在从n阶图中找两点的最短路径,复杂度为n^2级别(即O(n^2),O是大写欧),而n^2对于n是多项式(单项式当然也算),这就称为是多项式复杂度,或者多项式时间,其中问题(算法)的规模是n。如果某一个算法的规模是n,但是复杂度比如是2^n,写不成n的多项式,那就不是多项式时间。

是否有多项式时间算法计算给定的分解,并且对于一些

数学中,整数分解(素因数分解)问题是指:给出一个正整数,将其写成几个约数的乘积。例如,给出45这个数,它可以分解成32 ×5。根据算术基本定理,这样的分解结果应该是独一无二的。这个问题在代数学、密码学、计算复杂性理论和量子计算机等领域中有重要意义。
2005年,作为公共研究一部分的有663个二进制数位之长的RSA-200已经被一种一般用途的方法所分解。
如果一个大的,有n个二进制数位长度的数是两个差不多大小相等的约数的乘积,现在还没有很好的算法来以多项式时间复杂度分解它。
这就意味着没有已知算法可以在O(nk)(k为常数)的时间内分解它。但是现在的算法也是比Θ(en)快的。换句话说,现在我们已知最好的算法比指数数量级时间要快,比多项式数量级时间要慢。已知最好的渐近线运行时间是普通数域筛选法(GNFS)。时间是:
对于平常的计算机,GNFS是我们已知最好的对付n个二进制数位大约数的方法。不过,对于量子计算机, 彼得·秀尔在1994年发现了一种可以用多项式时间来解决这个问题的算法。如果大的量子计算机建立起来,这将对密码学有很重要的意义。这个算法在时间上只需要O(n3),空间只要O(n)就可以了。 构造出这样一个算法只需要2n量子位。2001年,第一个7量子位的量子计算机第一个运行这个算法,它分解的数是15
如果想获得最新消息,请你上wikipedia百科,英文版。

NP问题的简述

首先需要介绍P(Polynomial,多项式)问题.P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题.NP(Non-Deterministic Polynomial, 非确定多项式)问题,是指可以在多项式时间内被非确定机(他可以猜,他总是能猜到最能满足你需要的那种选择,如果你让他解决n皇后问题,他只要猜n次就能完成—-每次都是那么幸运)解决的问题.这里有一个著名的问题—-千禧难题之首,是说P问题是否等于NP问题,也即是否所有在非确定机上多项式可解的问题都能在确定机上用多项式时间求解.
这样一来,只要我们找到一个NPC问题的多项式解,所有的NP问题都可以多项式时间内划归成这个NPC问题,再用多项式时间解决,这样NP就等于P了.
换一种说法,如果一个问题的复杂度是该问题的一个实例规模n的多项式函数,则这种可以在多项式时间内解决的问题属于P类问题.通俗地称所有复杂度为多项式时间的问题为易解的问题类,否则为难解的问题。
有些问题很难找到多项式时间的算法(或许根本不存在),例如“找出无向图中哈密顿回路”问题。但如果给了该问题的一个答案,可以在多项式时间内判断这个答案是否正确。例如说对于哈密顿回路问题,给一个任意的回路,很容易判断它是否是哈密顿回路(只要看是不是所有的顶点都在回路中就可以了)。这里给出NP问题的另一个定义,这种可以在多项式时间内验证一个解是否正确的问题称为NP问题,亦称为验证问题类。
简单的说,存在多项式时间的算法的一类问题,称之为P类问题;在多项式时间内可由非确定机解决的一类问题,称之为NP问题。另外,很多人相信P类问题是NP问题的一个子集,但既没有人证明出有某个问题属于NP但不属于P,也没有人证明所有NP问题都能在多项式时间内有解。