二进制数的计算过程是怎样的
1、整数部分:
方法:用2辗转相除直到结果为1,将余数和最后的1从下向上的组合,就是我们想要的结果。
2、小数部分:
方法:乘2取整,顺序排列。
具体做法是:
用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
扩展资料
二进制数的特性:
1、如果一个二缺则进制数(整型)数的第零位的值是1,那么这个数就是奇数;而如果该位是0,那么这个数就是偶数。
2、如果一个二进制数的低端n位都是零,那么这个数可以被2n整除。
3、如果一个二进制数的第n位是一,而其他各位都是零,那么这个数等于2^n。
4、如果一个二进制数的第零位到第n – 1位都是1,而且其他各位都是0,那么这个数等于2^n – 1。
5、将一个二进制数的所有位左移移位的结果是将该数乘以二。
6、将一个无符号二进制数的所有位右移一位的结果等效于该数除以二(这对有符号数不适用)。余数会被下舍入。
7、将两个n位的二进制数相乘可能会需要2*n位来保存结果。
8、将两个n位的二进制数相加或者相减绝不会需要多于n 1位来保存结果。
9、将一个二进制数的所有位取反(就是将所有的一改为零,所有的零改为一)等效于将该数取负(改变符号)再将结果减一。
10、将任意伏差棚给定个数的位表示的最大无符号二进制数加一的结果永远是零。
11、零递减(减一)的结果永远是某个给定个数的庆辩位表示的最大无符号二进制数。
12、n位可以表示2n个不同的组合。
13、数2年包含n位,所有位都是一。
参考资料
二进制数-百度百科
二进制计算方法是什么
加法:0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。减凯茄法:0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向银孙薯右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整锋者数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
扩展资料:
二进制数与十进制数一样,同样可以进行加、减、乘、除四则运算。其算法规则如下:
加运算:0+0=0,0+1=1,1+0=1,1+1=10,(逢2进1);
减运算:1-1=0,1-0=1,0-0=0,0-1=1,(向高位借1当2);
乘运算:0×0=0,0×1=0,1×0=0,1×1=1,(只有同时为“1”时结果才为“1”);
除运算:二进制数只有两个数(0,1),因此它的商是1或0。
加法0+0=0,0+1=1+0=1,1+1=10
减法0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010
2进制怎么算计算步骤
二进制的或运算:遇1得1。
二进制的与运算:遇0得0。
二进制的非运算:各位取反。
加法法则: 0+0=0,0+1=1+0=1,1+1=10。
减法,当需要向上一位借数时,必须把上一位的1看成下一位的10。
减法法则: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1当10看成 2,
则 0 – 1 – 1 = 0 有借位 1 – 1 – 1 = 1 有借位。
乘法法则: 0×0=0,0×1=0,1×0=0,1×1=1。
除法应注意: 0÷0 =0(无意义),0÷1 =0,1÷0 =0(无意义)。
除法法则: 0÷1=0,1÷1=1。
扩展资料:
二凯没进制运算法则:
莱布尼兹也是第一个认识到二进制记数法重要性的人,并系统地提出了二进制数的运算法则。
二进制对200多年后计算雹毁机的发展产生了深远的影响。
他于1716年发表了《论中国的哲学》一文,专门讨论八卦与二进制,指出二进制与八卦有共同之处。
0、1是基源孙备本算符。
因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
从右往左第一位表示2的0次方,第二位表示2的1次方,第n位表示2的n-1次方。
可以将1理解为有,0理解为无。
二进制怎么算
二进制的计算数据是用0和1两个数码来表示的数。基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。计算机中的二进制是一个非常微小的开关,用“开”来表示1,“关”来表示0。
二进制的计算分巧举为颤液五种:
1、加法有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10,0进位为1。
2、乘法有四种情况: 0×0=0,1×0=0,0×1=0,1×1=1。
3、减法有四种孝洞碧情况:0-0=0,1-0=1,1-1=0,0-1=1。
4、除法有两种情况:0÷1=0,1÷1=1。
5、拈加法二进制是加减乘除外的一种特殊算法。拈加法运算与进行加法类似,但不需要做进位。
二进制和十进制互相转换
二进制和十进制互相转换的规则口诀为:除二取余,倒序排列,也就是说将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果,由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位 32位等。
二进制位转化为十进制方法:要从右到左用二进制的每个数去乘以2的相应次方,小数点后则是从左往右。
所以总结起来通用公式为:abcd.efg(二进制)=d*2^0+c*2^1+b*2^2+a*2^3+e*2^-1+f*2^-2+g*2^-3(十进制)。
二进制如何计算
二进制如何计算
二进制如何计算,虽然现如今大家都或多或少的学习过二进制,但是还是很多人对于这一种内容很苦手,很难学会这一个知识点,因此难以看懂二进制的算法,下面我带大家简单了解一下二进制如何计算.
二进制如何计算1
二进制的计算数据是用0和1两个数码来表示的数。基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。计算机中的二进制是一个非常微小的开关,用“开”来表示1,“关”来表示0。二进制的计算分为五种:
1、加法有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10,0进位为1。
2、乘法有四种情况: 0×0=0,1×0=0,0×1=0,1×1=1。
3、减法有四种情况:0-0=0,1-0=1,1-1=0,0-1=1。
4、除法有两种情况:0÷1=0,1÷1=1。
5、拈加法二进制是加减乘除外的.一种特殊算法。拈加法运算与进行加法类似,但不需要做进位。
扩展资料:
1、二进制的优点
数字装置简单可靠,所用元件少;只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;基本运算规则简单,运算操作方便。
2、缺点
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制阅读。二进制数太长,需要将它转换成10进制数,或者先将这个二进制转换成16进制,然后再转换为10进制。
二进制如何计算2
加法: 0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。减法:0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
二进制数转换成十六进制数:二进制数转换成十六进制数时,只要从小数点位置开始,向左或向右每四位二进制划分一组(不足四位数可补0),然后写出每一组二进制数所对应的十六进制数码即可。
扩展态此资料:
计算机采用二进制的原因:
1、技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
2、简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
3、适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
4、易于进行转换,二进制与十进制数易于互相转换。
5、用二进制表示数据具有抗干扰能力强,可靠性圆猜高等优点。因为每位数据只有高低两个状态,当受到一定橘闭型程度的干扰时,仍能可靠地分辨出它是高还是低。
二进制怎么算
二进制的计算数据是用0和1两个数码来表示的数。基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。计算机中的二进制是一个非常微小的开关,用“开”来表示1,“关”来表示0。二进制的计算分为五种:
1、加法有四种情况: 0+0=0,0+1=1,1+0=1,1+1=10,0进位为1。
2、乘法有四种情况: 0×0=0,1×0=0,0×1=0,1×1=1。
3、减法有四种情况:0-0=0,1-0=1,1-1=0,0-1=1。
4、除法有两种情况:0÷1=0,1÷1=1。燃答
5、拈加法二进制是加减乘除外的一种特殊算法。拈加法运算与进行加法类似,但不需要做进位。
扩展资料:
1、二进制的优点
数字装置简单可靠,所用元件少;只有两个数码0和1,因此它的每一位数都可用任何具有两个不同皮粗慧稳定状态的元件来表示;基本运算规则简单,运算凳伍操作方便。
2、缺点
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制阅读。二进制数太长,需要将它转换成10进制数,或者先将这个二进制转换成16进制,然后再转换为10进制。
二进制是怎么运算的
二进制的运算算术运算二进制的加法运算法则:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位)。
二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1,1+1=10(向高位进位);即7=111,
10=1010,3=11;
二进制的减法:0-0=0,0-1=1(向高位源樱袭借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;
二进制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,颂迹1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ;
逻辑运算二进制的或运算:遇1得1;
二进制的与运算:遇0得0 二进制的非运算:各位取反。
扩展资料:
1、十进制转换为二进制:
整数转换:采用连续除基取余,逆序排列法,直至商为0。
小数转换:采用连续乘基(即2)取整,顺序排列法。例(0.8125)10=(0.1101)2。步骤:0.8125*2=1.625,0.625*2=1.25,0.25*2=0.5,0.5*2-=1.0,则正向取整得(0.1101)雹兄2。
2、八进制转换为二进制:
把每一位八进制数对应转换为一个三位二进制数。例(745.361)8= (111100101.011110001)2
3、十六进制转换为二进制:把每一位十六进制数对应转换为一个四位二进制数。
百度百科-二进制运算法则
二进制怎么算
二进制计算的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
二进制数(binaries)是逢2进位的进位制,0、1是基本算符;计算机运团神算基础采用二进制。电脑的基础是二进制。
在早期设计的蠢铅常用的进制主要是十进制(因为我们有十个手指,所以十进制是比较合理的选择,用手指可以表示十个数字,0的概念直到很久以后才出现,所以是1-10而不是0-9)。电子计算机出现以后,使用电子管来表示十种状态过于复杂,所以所有塌档亏的电子计算机中只有两种基本的状态,开和关。
二进制数与十进制数一样,同样可以进行加、减、乘、除四则运算。其算法规则如下:
加运算:0+0=0,0+1=1,1+0=1,1+1=10,(逢2进1)。
减运算:1-1=0,1-0=1,0-0=0,0-1=1,(向高位借1当2)。
乘运算:0×0=0,0×1=0,1×0=0,1×1=1,(只有同时为“1”时结果才为“1”)。
除运算:二进制数只有两个数(0,1),因此它的商是1或0。
加法0+0=0,0+1=1+0=1,1+1=10。
减法0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010。
乘法0×0=0,0×1=1×0=0,1×1=1。
二进制数怎么算
从最低哗高搏位(最右)算起,位上的数字乘以本位的权重,权重就是2的第几位的位数减一次方。
比如第2位就是2的(2-1次)方,就是2;第8位就是2的(8-1)次方是128。把所有的值加起来。
2(1-1)代表2的0次方,就是1;其他类推
比如二进制1101,换算成十进制就是:1*2(1-1)+0*2(2-1)+1*2(3-1)+1*2(4-1)=1+0+4+8=13。
扩展资料:
1、二进制转换为八进制:
把二进制的数从右往左,三位一组,不够补0
列:111=4+2+1=7
11001拆分为 001和011,001=1,011=2+1=3。
那么11001转换为八进制就是31。
2、二进制转换为十六进制:
参照二进制转八进制,但是它是从右往左,四位一乱祥组,不够补0
列子:1101101拆分为1101、0110
分别计算两个二进制的值,1101=8+4+0+1=13,十六进制中13为D
0110=4+2=6,那么二进制1101101转换为十六进制就是6D。
参考资念空料:百度百科-数制
二进制计算方法
二进制计算方法
二进制计算方法,相信大家对阅读这件事情并不搭简反感吧,相信有很多人都会喜欢越多各种各样慧枝伏的书籍或资料,那么大家都知道二进制计算方法是什么吗?还不知道的小伙伴们一起来看看相关内容吧。
二进制计算方法1
加法: 0+0=0;0+1=1;1+0=1;1+1=10;0进位为1。 减法: 0-0=0,1-0=1,1-1=0,0-1=1。
二进数转四进制时,以小数点为起点,向左和向右两个方向分别进行分段,每两个数字一段,不足两位的分别在左边或右边补零。
二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。
二进制数转换成十六进制数: 二进制数转换成十六进制数时,只要从小数点位置开始,向左或向右每四位二进制划分一组(不足四位数可补0),然后写出每一组二进制数所对应的十六进制数码即可。
计算机采用二进制的原因:
1、技术实现简单,计算机是由逻辑电路组成,逻辑电路通常只有两个状态,开关的接通与断开,这两种状态正好可以用“1”和“0”表示。
2、简化运算规则:两个二进制数和、积运算组合各有三种,运算规则简单,有利于简化计算机内部结构,提高运算速度。
3、适合逻辑运算:逻辑代数是逻辑运算的理论依据,二进制只有两个数码,正好与逻辑代数中的“真”和“假”相吻合。
4、易于进行前携转换,二进制与十进制数易于互相转换。
5、用二进制表示数据具有抗干扰能力强,可靠性高等优点。因为每位数据只有高低两个状态,当受到一定程度的’干扰时,仍能可靠地分辨出它是高还是低。
二进制计算方法2
二进制算法
二进制的或运算:遇1得1
二进制的与运算:遇0得0
二进制的非运算:各位取反
法则
加法法则: 0+0=0,0+1=1,1+0=1,1+1=10
减法,当需要向上一位借数时,必须把上一位的1看成下一位的(2)10。
减法法则: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1当(10) 看成 2 则 0 – 1 – 1 = 0 有借位 1 – 1 – 1 = 1 有借位。
乘法法则: 0×0=0,0×1=0,1×0=0,1×1=1
除法应注意: 0÷0 =0(无意义),0÷1 =0,1÷0 =0(无意义)
除法法则: 0÷1=0,1÷1=1