cortexm3 or

简述Cortex- M3仔储器如何对4G地址空间进行划分

Cortex-m3是一个32位处理器,其地址总线、数据总线都是32位的,故可在4G的地址范围上资源寻址。Cortex-m3内核把4G空间划定了基本的框架,定义不同的使用用途。
0x0000 0000 —-0x1FFF FFFF (512MB) 该区域为code区(flash区),供指令总线与数据总线取指取数使用;可以执行指令;
0x2000 0000 —-0x3FFF FFFF (512MB) 该区域为片上SRAM区,芯片制造商可在此布设RAM,可以将代码复制到此处运行,该区域也是可以执行指令code的;低1MB空间可位寻址,通过位带别名可扩展为32Mb的位寻址。
0x4000 0000 —-0x5FFF FFFF (512MB)该区域为“片上外设“区 ,主要为片上外设的相关寄存器,即特殊功能寄存器区,同理低1MB也可位寻址;该区域不可执行代码;
0x6000 0000 —-0x9FFF FFFF(1G)该区域为片外RAM区,该区域可执行代码;
0xA000 0000 —-0xDFFF FFFF(1G)该区域为片外外设区,该区域不可执行代码;
0xE000 0000 —-0xFFFF FFFF(1G)该区域为系统区,该区域不可执行代码;

Cortex-M3的特点

高性能
 许多指令都是单周期的——包括乘法相关指令。并且从整体性能上,Cortex-M3比得过绝大多数其它的架构。
 指令总线和数据总线被分开,取值和访内可以并行不悖
 Thumb-2的到来告别了状态切换的旧世代,再也不需要花时间来切换于32位ARM状态和16位Thumb状态之间了。这简化了软件开发和代码维护,使产品面市更快。
 Thumb-2指令集为编程带来了更多的灵活性。许多数据操作现在能用更短的代码搞定,这意味着Cortex-M3的代码密度更高,也就对存储器的需求更少。
 取指都按32位处理。同一周期最多可以取出两条指令,留下了更多的带宽给数据传输。
 Cortex-M3的设计允许单片机高频运行(现代半导体制造技术能保证100MHz以上的速度)。即使在相同的速度下运行,CM3的每指令周期数(CPI)也更低,于是同样的MHz下可以做更多的工作;另一方面,也使同一个应用在CM3上需要更低的主频。
2.11.2 先进的中断处理功能
 内建的嵌套向量中断控制器支持多达240条外部中断输入。向量化的中断功能剧烈地缩短了中断延迟,因为不再需要软件去判断中断源。中断的嵌套也是在硬件水平上实现的,不需要软件代码来实现。
 Cortex-M3在进入异常服务例程时,自动压栈了R0-R3, R12, LR, PSR和PC,并且在返回时自动弹出它们,这多清爽!既加速了中断的响应,也再不需要汇编语言代码了(第8章有详述)。
 NVIC支持对每一路中断设置不同的优先级,使得中断管理极富弹性。最粗线条的实现也至少要支持8级优先级,而且还能动态地被修改。
 优化中断响应还有两招,它们分别是“咬尾中断机制”和“晚到中断机制”。
 有些需要较多周期才能执行完的指令,是可以被中断-继续的——就好比它们是一串指令一样。这些指令包括加载多个寄存器(LDM),存储多个寄存器(STM),多个寄存器参与的PUSH,以及多个寄存器参与的POP。
 除非系统被彻底地锁定,NMI(不可屏蔽中断)会在收到请求的第一时间予以响应。对于很多安全-关键(safety-critical)的应用,NMI都是必不不可少的(如化学反应即将失控时的紧急停机)。
低功耗
 Cortex-M3需要的逻辑门数少,所以先天就适合低功耗要求的应用(功率低于0.19mW/MHz)在内核水平上支持节能模式(SLEEPING和SLEEPDEEP位)。通过使用“等待中断指令(WFI)”和“等待事件指令(WFE)”,内核可以进入睡眠模式,并且以不同的方式唤醒。另外,模块的时钟是尽可能地分开供应的,所以在睡眠时可以把CM3的大多数“官能团”给停掉。
 CM3的设计是全静态的、同步的、可综合的。任何低功耗的或是标准的半导体工艺均可放心饮用。
系统特性
 系统支持“位寻址带”操作(8051位寻址机制的“威力大幅加强版”),字节不变的大端模式,并且支持非对齐的数据访问。
 拥有先进的fault处理机制,支持多种类型的异常和faults,使故障诊断更容易。
 通过引入banked堆栈指针机制,把系统程序使用的堆栈和用户程序使用的堆栈划清界线。如果再配上可选的MPU,处理器就能彻底满足对软件健壮性和可靠性有严格要求的应用。
调试支持
 在支持传统的JTAG基础上,还支持更新更好的串行线调试接口。
 基于CoreSight调试解决方案,使得处理器哪怕是在运行时,也能访问处理器状态和存储器内容。
 内建了对多达6个断点和4个数据观察点的支持。
 可以选配一个ETM,用于指令跟踪。数据的跟踪可以使用DWT
 在调试方面还加入了以下的新特性,包括fault状态寄存器,新的fault异常,以及闪存修补 (patch)操作,使得调试大幅简化。
 可选ITM模块,测试代码可以通过它输出调试信息,而且“拎包即可入住”般地方便使用。

Cortex-M3的介绍

Cortex-M3是一个32位的核,在传统的单片机领域中,有一些不同于通用32位CPU应用的要求。在工控领域,用户要求具有更快的中断速度,Cortex-M3采用了Tail-Chaining中断技术,完全基于硬件进行中断处理,最多可减少12个时钟周期数,在实际应用中可减少70%中断。

cortex m3 m4区别

主要是m4比m3多了dsp的支持功能,m4还支持浮点运算。
Cortex-M4处理器的指令集具有增强的高效DSP特性库,包括扩展的单周期16/32位乘法累加器(MAC)、双16位MAC指令、优化的8/16位SIMD运算及饱和运算指令。总体来说,M3与M4最显著的差别在于,M4具有可选的单精度(IEEE-754)浮点单元(FPU)。

cortex-m3使用的堆栈模型是什么

Cortex-M3使用的是“向下生长的满栈“模型,堆栈指针指向最后一个被压入堆栈的32位数值;PUSH压栈时,SP先自减4,再存入新值,POP出栈时相反,先从SP指针处读出上次被压入堆栈的值,SP再自增4;

什么是Cortex-M3Cortex-M3有什么特点

Cortex-M3处理器,是市场上现有的最小、能耗最低、最节能的ARM处理器。该处理能耗非常低、门数量少、代码占用空间小,使得MCU开发人员能够以8位处理器的价位,获得32位处理器的性能。超低门数还使其能够用于模拟信号设备和混合信号设备及MCU应用中,可望明显节约系统成本.
通过系统的课程学习,加以项目实战,全面模拟IT公司的ARM软硬件开发、管理、组织、实施过程,让没有ARM编程基础和实际工作经验的大专以上学历的学员在2到3个月的时间内迅速获得1-3年的ARM开发经验,具备实际ARM开发的能力,胜任开发工作,让学员学完后就以具有1-3年开发经验的ARM工程师身份进入工作岗位。

Cortex-M3处理器与8051比有哪些特点

Cortex-M3是一个32位的核,在传统的单片机领域中,有一些不同于通用32位CPU应用的要求。在工控领域,用户要求具有更快的中断速度,Cortex-M3采用了Tail-Chaining中断技术,完全基于硬件进行中断处理,最多可减少12个时钟周期数,在实际应用中可减少70%中断
8051是一种8位元的单芯片微控制器,属于MCS-51单芯片的一种,由英特尔公司于1981年制造。INTEL公司将MCS51的核心技术授权给了很多其它公司,所以有很多公司在做以8051为核心的单片机,如Atmel、飞利浦、深联华等公司,相继开发了功能更多、更强大的兼容产品。
8051单芯片是同步式的顺序逻辑系统,整个系统的工作完全是依赖系统内部的时脉信号,用以来产生各种动作周期及同步信号。在8051单片机中已内建时钟产生器,在使用时只需接上石英晶体谐振器(或其它振荡子)及电容,就可以让系统产生正确的时钟信号。

cortex-m3 是什么体系结构

基于ARM嵌入式处理器的片上系统解决方案可应用于应用、汽车系统,家庭网络和无线技术等市场领域。ARM Cortex-M3系列提供了一个标准的体系结构来满足以上各种技术的不同性能要求,其包含的处理器基于ARMv7架构的三个分工明确的部分。A部分面向复杂的尖端应用程序,用于运行开放式的复杂操作系统;R部分针对实时系统;M部分为成本控制和微控制器应用提供优化。Cortex-M3是首款基于ARMv7-M架构的处理器,是专门为了在微控制器,汽车车身系统,工业控制系统和无线网络等对功耗和成本敏感的嵌入式应用领域实现高系统性能而设计的,它大大简化了可编程的复杂性,使ARM架构成为各种应用方案(即使是最简单的方案)的上佳选择。