霍夫 变换和最小二乘法有什么区别
它们是算不同的是东西,得到的解也不同。
霍夫变换: 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。
最小二乘法:又称最小平方法是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
matlab中的hough变换问题
霍夫变换在图像处理里常用来在黑白图像里检测直线,matlab里有相应的几个函数,使用方便,这里把matlab帮助里介绍的例子演示一下。
matlab里霍夫变换主要包含一下三个函数:
hough:实现霍夫变换,得到霍夫变换矩阵,用法如下
[H, theta, rho] = hough(BW)
[H, theta, rho] = hough(BW, ParameterName,ParameterValue)
houghpeaks:在霍夫变换矩阵里找极值点
peaks = houghpeaks(H, numpeaks)
peaks = houghpeaks(…, param1, val1,param2, val2)
houghlines:从霍夫变换矩阵中提取线段
lines = houghlines(BW, theta, rho,peaks)
lines = houghlines(…, param1, val1,param2, val2)
下面以一个例子来看看霍夫变换的效果,代码如下:
% 测试霍夫变换
clc
clear
close all
% 读取图像
I = imread(’circuit.tif’);
rotI = imrotate(I,80,’crop’); % 旋转33度,保持原图片大小
fig1 = imshow(rotI);
% 提取边
BW = edge(rotI,’canny’);
figure, imshow(BW);
% 霍夫变换
[H,theta,rho] = hough(BW); % 计算二值图像的标准霍夫变换,H为霍夫变换矩阵,theta,rho为计算霍夫变换的角度和半径值
figure, imshow(imadjust(mat2gray(H)),,’XData’,theta,’YData’,rho,…
’InitialMagnification’,’fit’);
xlabel(’\theta (degrees)’), ylabel(’\rho’);
axis on, axis normal, hold on;
colormap(hot)
% 显示霍夫变换矩阵中的极值点
P = houghpeaks(H,50,’threshold’,ceil(0.3*max(H(:)))); % 从霍夫变换矩阵H中提取5个极值点
x = theta(P(:,2));
y = rho(P(:,1));
plot(x,y,’s’,’color’,’black’);
% 找原图中的线
lines = houghlines(BW,theta,rho,P,’FillGap’,18,’MinLength’,180);
figure, imshow(rotI), hold on
max_len = 0;
for k = 1:length(lines)
% 绘制各条线
xy = [lines(k).point1; lines(k).point2];
plot(xy(:,1),xy(:,2),’LineWidth’,2,’Color’,’green’);
% 绘制线的起点(黄色)、终点(红色)
plot(xy(1,1),xy(1,2),’x’,’LineWidth’,2,’Color’,’yellow’);
plot(xy(2,1),xy(2,2),’x’,’LineWidth’,2,’Color’,’red’);
% 计算线的长度,找最长线段
len = norm(lines(k).point1 – lines(k).point2);
if ( len 》 max_len)
max_len = len;
xy_long = xy;
end
end
% 以红色线高亮显示最长的线
plot(xy_long(:,1),xy_long(:,2),’LineWidth’,2,’Color’,’red’);
其中,同一条线段由于某些原因(比如光照、噪音等)变成了不连续的两条较短的线段,所以要进项合并,至于多少长度的才合并成同一条直线,是依据不同的图像而言的,由fillgap参数决定。而有些线段可能是噪声,所以小于7的舍去,这个也么有标准,需要根据不同的图像而定。
霍夫变换拟合椭圆并确定对称轴和角度
1、一种利用限制性随机霍夫变换进行椭圆检测的图像处理方法,其特征在于 包括如下具体步骤: 1)图像预处理:对于灰度图像,先进行中值滤波并进行Canny算子边缘检测, 使图像成为二值图,对于二值图像,只进行中值滤波。然后采用基于模板的方法 对二值图像进行细化,使细化后图像只有单像素宽度; 2)转化细化后的图像为矢量图形:采用聚类方法,将细化后的图像每个像素 点转化成为图形节点,图形节点用节点序号、节点所在曲线号、节点位置、类型、 链接表、删除标志及链接曲线表七个属性来描述像素的位置及与其它像素的关系, 然后进一步合并和分析图形节点,将属于同一独立或离散曲线的节点归为一组, 以此将整个图像以一组组曲线表示,得到图像上每条曲线的详细信息及整个图像 的综合信息,即得到图像的矢量图形; 3)在矢量图形中应用限制性随机霍夫变换检测图像中的椭圆:根据得到的 矢量图形数据,在给定的每条曲线所在的坐标范围内随机选取三点来拟合参数化 曲线,如果这三点满足椭圆方程,就把它们添加到累加器中,并根据拟合程度赋 予某一权值,重复选择三点执行拟合过程直到检测到满足椭圆方程的像素点集数 超过预定阈值,然后从累加器中选择出具有最好权值的参数集用以表示图像中的 这条曲线,如果累加器中的参数集与正在检测得到的参数集相似,则平均此参数 集的值,用此新参数集代替累加器中的原参数集,最后将找出的参数集拿到图像 中去验证;按上述方法检测完一条曲线后,迅速移至下一条曲线范围内进行下一 轮检测,通过这种不断移动地在小范围内检测方法,完成对整个图像的椭圆检测, 得到检测出来的所有椭圆的参数集; 4)从参数集中得到最终检测出的p,q,r1,r2和θ五个椭圆参数,从而确 定每个椭圆的位置及形状,其中p,q为椭圆由原心偏移后的坐标,r1是椭圆x轴 半径,r2是椭圆y轴半径,θ是椭圆沿x轴顺时针偏转角度。
霍夫变换的应用实例1
在看下面一个问题:我们要从一幅图像中检测出半径已知的圆形来。这个问题比前一个还要直观。我们可以取和图像平面一样的参数平面,以图像上每一个前景点为圆心,以已知的半径在参数平面上画圆,并把结果进行累加。最后找出参数平面上的峰值点,这个位置就对应了图像上的圆心。在这个问题里,图像平面上的每一点对应到参数平面上的一个圆。
把上面的问题改一下,假如我们不知道半径的值,而要找出图像上的圆来。这样,一个办法是把参数平面扩大称为三维空间。就是说,参数空间变为x–y–R三维,对应圆的圆心和半径。
图像平面上的每一点就对应于参数空间中每个半径下的一个圆,这实际上是一个圆锥。最后当然还是找参数空间中的峰值点。不过,这个方法显然需要大量的内存,运行速度也会是很大问题。有什么更好的方法么?我们前面假定的图像都是黑白图像(2值图像),实际上这些2值图像多是彩色或灰度图像通过边缘提取来的。我们前面提到过,图像边缘除了位置信息,还有方向信息也很重要,这里就用上了。根据圆的性质,圆的半径一定在垂直于圆的切线的直线上,也就是说,在圆上任意一点的法线上。这样,解决上面的问题,我们仍采用2维的参数空间,对于图像上的每一前景点,加上它的方向信息,都可以确定出一条直线,圆的圆心就在这条直线上。这样一来,问题就会简单了许多。
Python 霍夫变换检测直线怎么用滚动条调节阈值
霍夫变换最初被设计成用来检测能够精确地解析定义的形状(例如直线,圆,椭圆等)。在这些情况下,我们可以通过对于形状信息的充分了解来找出它们在图像中的位置和方向。而广义霍夫变换(GeneralizedHoughTransform,GHT)则由DanaH.Ballard在1981年提出,它在霍夫变换的基础上根据模板匹配的原理进行了调整。广义霍夫变换不要求能够给出需要检测的形状的解析式,它可以检测任意给定的形状。
霍夫变换的介绍
原理简介 霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。
什么是圆快速霍夫变换
霍夫变换(Hough Transform)
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。最基本的霍夫变换是从黑白图像中检测直线(线段)。我们先看这样一个问题:设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k–b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x–y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法:
首先,我们初始化一块缓冲区,对应于参数平面,将其所有数据置为0.
对于图像上每一前景点,求出参数平面对应的直线,把这直线上的所有点的值都加1。最后,找到参数平面上最大点的位置,这个位置就是原图像上直线的参数。上面就是霍夫变换的基本思想。就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。
在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p—theta平面上的一条曲线上。其它的还是一样。
在看下面一个问题:我们要从一幅图像中检测出半径以知的圆形来。这个问题比前一个还要直观。我们可以取和图像平面一样的参数平面,以图像上每一个前景点为圆心,以已知的半径在参数平面上画圆,并把结果进行累加。最后找出参数平面上的峰值点,这个位置就对应了图像上的圆心。在这个问题里,图像平面上的每一点对应到参数平面上的一个圆。
把上面的问题改一下,假如我们不知道半径的值,而要找出图像上的圆来。这样,一个办法是把参数平面扩大称为三维空间。就是说,参数空间变为x–y–R三维,对应圆的圆心和半径。
图像平面上的每一点就对应于参数空间中每个半径下的一个圆,这实际上是一个圆锥。最后当然还是找参数空间中的峰值点。不过,这个方法显然需要大量的内存,运行速度也会是很大问题。有什么更好的方法么?我们前面假定的图像都是黑白图像(2值图像),实际上这些2值图像多是彩色或灰度图像通过边缘提取来的。我们前面提到过,图像边缘除了位置信息,还有方向信息也很重要,这里就用上了。根据圆的性质,圆的半径一定在垂直于圆的切线的直线上,也就是说,在圆上任意一点的法线上。这样,解决上面的问题,我们仍采用2维的参数空间,对于图像上的每一前景点,加上它的方向信息,都可以确定出一条直线,圆的圆心就在这条直线上。这样一来,问题就会简单了许多。
接下来还有许多类似的问题,如检测出椭圆,正方形,长方形,圆弧等等。这些方法大都类似,关键就是需要熟悉这些几何形状的数学性质。霍夫变换的应用是很广泛的,比如我们要做一个支票识别的任务,假设支票上肯定有一个红颜色的方形印章,我们可以通过霍夫变换来对这个印章进行快速定位,在配合其它手段进行其它处理。霍夫变换由于不受图像旋转的影响,所以很容易的可以用来进行定位。
霍夫变换有许多改进方法,一个比较重要的概念是广义霍夫变换,它是针对所有曲线的,用处也很大。就是针对直线的霍夫变换也有很多改进算法,比如前面的方法我们没有考虑图像上的这一直线上的点是否连续的问题,这些都要随着应用的不同而有优化的方法。
霍夫变换的应用
这个性质就为我们解决问题提供了方法:
首先,我们初始化一块缓冲区,对应于参数平面,将其所有数据置为0.
对于图像上每一前景点,求出参数平面中的对应直线,并将该直线上所有点的出现次数进行统计。最后,找到参数平面上出现次数最多的点位置,这个位置就是原图像上直线的参数。上面就是霍夫变换的基本思想。就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到次数统计的两个峰值点,依此类推。
在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(θ)+y*sin(θ)。这样,图像平面上的一个点就对应到参数p—theta平面上的一条曲线上。其它的还是一样。
用matlab对图像处理时,运用了霍夫变换 peaks =houghpeaks(H,N,’threshold’,0.2*max(H(:)))
houghpeaks返回的是霍夫空间中峰值点对应坐标,第一列是rho,代表直线与原点(图像左上角)的距离,第二列是theta,代表直线与原点间的垂直线和x轴线的夹角,因为你在霍夫变换时角度的步进间隔为0.25,所以(-90)- 89度被分为180/0.25=720份,1代表-90度,720代表89度,例如第一个,(323/720)*180-90= (-9.25)度,差不多这样子
将直线y=1和直线y=x-1变化到霍夫空间并解释交点
摘要
您好很高兴为您服务。霍夫变换
霍夫变换是1972年提出来的,最开始就是用来在图像中过检测直线,后来扩展能检测圆、曲线等。
直线的霍夫变换就是 把xy空间的直线 换成成 另一空间的点。就是直线和点的互换。
我们在初中数学中了解到,一条直线可以用如下的方程来表示:y=kx+b,k是直线的斜率,b是截距。
我们转换下变成:b=-kx+y。我们是不是也可以把(k,b)看作另外一个空间中的点?这就是k-b参数空间。 这样,我们就把一条x-y直线用一个(k,b)的点表示出来了。
咨询记录 · 回答于2021-11-23
将直线y=1和直线y=x-1变化到霍夫空间并解释交点
您好很高兴为您服务。霍夫变换
霍夫变换是1972年提出来的,最开始就是用来在图像中过检测直线,后来扩展能检测圆、曲线等。
直线的霍夫变换就是 把xy空间的直线 换成成 另一空间的点。就是直线和点的互换。
我们在初中数学中了解到,一条直线可以用如下的方程来表示:y=kx+b,k是直线的斜率,b是截距。
我们转换下变成:b=-kx+y。我们是不是也可以把(k,b)看作另外一个空间中的点?这就是k-b参数空间。 这样,我们就把一条x-y直线用一个(k,b)的点表示出来了。
我们在中学中学过,平面上的一个点也可以用距离-角度来定义,也就是极坐标。那么在图像中,每一个点都可以用距离和角度来表达: