spss组内检验如何做
spss实验生活中我们经常的使用,基本是每个实验都会用到这个的,当然也可能是其他统计软件,但是这个spss也是比较常用的,spss里面T检验是比较常见的,另外方差也是比较常见的,而t检验主要是比较两组数据之间的差别,比较之前还是有一些要求的,我们统计一些数据,虽说可以用手动计算来得出结论,但是一旦数据量特别大的时候,人工计算将会特别的繁琐而且经常可能出现计算失误的情况,所以spss可以说在统计学甚至其他方面有着不可缺少的作用,下面小编会给大家讲解一下t检验的几个详细教程,希望对大家有所帮助。
工具/原料
spss软件 数据样本 图片教程
单样本T检验
1/3 分步阅读
单样本T检验,我们要做的其实主要就是求数据的置信区间以及数据是否有显著性差异,而我们生物医学上面基本都是要求95%的置信区间的,当然有一些特殊情况下面,这个区间也是会变的,首先,我们先导入数据样本,小编会以“身高”为例,求取身高的这个区间以及确定它是否有显著性差异。
2/3
导入数据样本之后,执行“分析-比较均值-单样本T检验(s)”,这个时候我们会看见一个弹出窗口,我们讲“升高(SG)”作为变量,进行设定,同时点击“选项”将置信百分比设置为95%,点击继续-确定。
软件测试工程师工资,【尚脑】什么学历能拿10000+?
广告
3/3
确定之后,系统会分析出结果,我们会发现升高p(sig)《0.05,这个就说明这组数据不是正态分布,是存在显著性差异的,而这组数据的置信区间就是(141,144)【就是(下限,上限),如图】
检测检验,检验检测信息管理20年老品牌-三维天地
广告
配对样本T检验
1/3
这个数据我们一般都是比较同组数据前后的数据差异,当然还有其他情况,但是总是这两组样本都不是相互独立的,而且是必须服从正态分布的,这样才能进行分析,首先,我们先导入样本数据【例子不是前后对照】。
pcr检测_净化车间_10多年净化工程规划经验
广告
2/3
导入数据之后,我们执行“分析-比较均值-配对样本T检验(P)”,这个时候弹出一个窗口,我们讲前后样本分布移动至如图的位置,同时点击“选项”选着95%的置信百分比。点击继续-确定。
查看剩余1张图
3/3
确定之后,系统分析数据,第一个表的p(sig)》0.05,说明两组直接无相关关系,而第二个表间p《0.05,说明其两组数据之间有显著性差异。【具体分析都得以得出的数据为参考哦】
独立样本T检验
1/5
独立样本T检验可以说是需要的要求比较多的,首先我们的数据是得服从正态分布的,首先,导入样本数据,我们可以看到样本中的两组数据“性别和工资”。
2/5
但是我们会发现,性别是数字标记的,很多人可能会对其不习惯,我们可以设置转换一下,首先点击“性别”进入“变量视图”,我们点击“值”将“1设置为男”“2设置为女”【这个性别都是有具体数据的不能乱设定哦】,设置好之后确定,点击转换,数字就变成男女文字了【转换按钮在图片上面有标记】
查看剩余1张图
3/5
基础数据处理好之后,执行“分析-比较均值-独立样本T检验(T)”,弹出窗口,将”工资“设定为检验变量,”性别“设为分组变量,同时点击定义组,设置组1,组2【组1就是男的数据组,组2就是女的数据组】,点击继续-确定。
查看剩余1张图
4/5
确定之后,我们就得出数据,而我们的独立样本必须服从方差齐性,如果方差不齐性,那么就得用T“检验,所以,我们开始分析这组数据,第二个表上面P(sig)《0.05,说明他的方差不相等,这个就说明我们得选用T“检验,所以,我们得选第二行的数据值。
5/5
当然啦,如果第二个表上面P(sig)》0.05,说明他的方差相等,这个就说明我们得选用T检验,那么,我们就得选着第二个表的第一行的数据值。
注意事项
以上均为经验总结如有不满请见谅
满意可以投我票或者关注我哦
spss进行层次分析法
1、首先在电脑中spss之后,点击上方导航栏的——转换选项卡。
2、然后在弹出的下拉菜单中点击——自动重新编码,如下图所示。
3、打开对话框,鼠标点击语文变量,将其添加到右侧的变量栏中。
4、接着自定义一个变量名称,点击——添加新名称。
5、最后设置好后点击——确定按钮。
6、这样结果就出来了,不过需要注意相近的数据尽量排列整齐,不然会显示统计不全的情况。
spss怎么做单因素方差分析
计算检验统计量的观察值和概率P_值:Spss自动计算F统计值,如果相伴概率P小于显著性水平a,拒绝零假设,认为控制变量不同水平下各总体均值有显著差异,反之,则相反,即没有差异。
spss教程:单因素方差分析
spss教程:单因素方差分析
方差齐性检验:控制变量不同水平下各观察变量总体方差是否相等进行分析。采用方差同质性检验方法(Homogeneity of variance),原假设“各水平下观察变量总体的方差无显著差异,思路同spss两独立样本t检验中的方差分析”。 图中相伴概率0.515大于显著性水平0.05,故认为总体方差相等。
趋势检验:趋势检验可以分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,线性变化,二次、三次等多项式。趋势检验可以帮助人们从另一个角度把握控制变量不同水平对观察变量总体作用的程度。图中线性相伴概率为0小于显著性水平0.05,故不符合线性关系。
spss教程:单因素方差分析
spss教程:单因素方差分析
spss教程:单因素方差分析
多重比较检验:单因素方差分析只能够判断控制变量是否对观察变量产生了显著影响,多重比较检验可以进一步确定控制变量的不同水平对观察变量的影响程度如何,那个水平显著,哪个不显著。常用LSD、S-N-K方法。LSD方法检测灵敏度是最高的,但也容易导致第一类错误(弃真)增大,观察图中结果,在LSD项中,报纸与广播没有显著差异,但在别的方法中,广告只与宣传有显著差异。
spss教程:单因素方差分析
spss教程:单因素方差分析
相似性子集:由图可知,划分的子集结果是一样的。通常在相似性子集划分时多采用S-N-K方法的结论。其结论可以与上述多重比较检验结合起来看,验证在LSD项中,报纸与广播没有显著差异的结论。
spss教程:单因素方差分析
spss教程-常用的数据描述统计:频数分布表等–统计学
链接:
课程目录:
数据分析之美
为什么学习统计学及统计误用现状
统计学核心概念
计量资料统计描述
计数资料统计描述
统计学核心思想解读
……
SPSS详细教程 OR值的计算
SPSS详细教程:OR值的计算
一、问题与数据
研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐性活动,通过计算比值比来探索这一差异。
性别变量为gender,男性赋值为1,女性赋值为2;喜欢竞技类运动的变量为comp,是赋值为1,否(即喜欢休闲类运动)赋值为2。部分数据如下图显示,左图为原始数据,右图为按性别和喜欢竞技类运动与否统计的汇总数据。
二、对问题的分析
为计算比值比,需要满足以下两个假设:
1. 假设1:自变量和因变量均为二分类变量。
2. 假设2:观测间相互独立。
接下来,将介绍计算比值比的SPSS操作。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,跳过数据准备步骤,直接计算比值比;如果使用按性别和喜欢竞技类运动与否统计的汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data 》 Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 比值比的SPSS操作
(1)点击主菜单Analyze 》 Descriptive Statistics 》 Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量gender选入Row(s):框,因变量comp选入Column(s):框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键。
(6)点击OK键,生成结果。
四、结果解释
1. 描述性分析
在报告比值比前,研究者应该先查看基本的一些统计量,了解数据特征。本例查看gender*comp Crosstabulation表,如下图:
表中可看到50名研究对象中男性和女性各25人。首先,查看男性喜欢竞技类运动的比值,如下图高亮显示:
25名男性中,18名男性喜欢竞技类运动,7名不喜欢(即喜欢娱乐性运动)。因此,男性喜欢竞技类运动的比值为喜欢与不喜欢的概率之比,即为喜欢竞技类运动的男性数量除以不喜欢的男性数量,得到比值为2.57(18÷7=2.57)。因此对男性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的两倍多。
同理,也可以得到女性的比值。下表中为25名女性喜欢竞技类运动的情况:
25名女性中10名喜欢竞技类运动,15名不喜欢。因此女性喜欢竞技类运动的比值为为喜欢竞技类运动的女性数量除以不喜欢的女性数量,得到比值为0.67(10÷15=0.67)。因此对女性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的0.67倍。
因此,研究者可以汇报:“本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动”。
2. 比值比
观察Risk Estimate表可以得到比值比,如下图:
性别与喜欢竞技类运动与否的比值比为3.857,95%置信区间为1.180到12.606。95%置信区间代表研究者有95%的把握确定人群中这一关联的真实比值比在1.180到12.606之间。此外,比值比还可以通过gender*comp Cross tabulation表的两个比值手动算出。
计算性别与喜欢竞技类运动与否的比值比,仅需要用男性的比值除以女性的比值,如下面算式。因此,男性喜欢竞技类运动的可能性是女性3.857倍。
如果比值比大于1且95%置信区间不包括1,代表男性喜欢竞技类运动的可能性大于女性;反之,比值比小于1且95%置信区间不包括1,则代表男性喜欢竞技类运动的可能性小于女性;若比值比的95%置信区间包括1,则说明男女性喜欢竞技类运动的可能性无统计学差异。
五、撰写结论
本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动。与女性相比,男性喜欢竞技类运动的比值比是3.857(95%置信区间:1.180-12.606),且有统计学意义。